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4 Quantum Coordinate Algebras

In this lecture we will introduce the Hopf algebra Cq[SL2], which is a direct gen-

eralisation of the classical coordinate algebra of the Lie group SL2. We construct

Cq[SL2] as a distinguished subalgebra of the vector space dual of Uq(sl2), and in so

doing give a natural presentation of the well-known pairing between the two alge-

bras. This important pairing generalises the classical pairing between the universal

enveloping algebra of sl2 and the coordinate algebra of SL2.

4.1 Coordinate Algebras as Hopf Algebras

As we saw in the first lecture, for any Lie algebra g, its enveloping algebra U(g)

has a natural Hopf algebra structure. As we will now see, the same is also true for

the coordinate algebra of any algebraic group.

Let G be a variety in Cn, with a given algebraic group structure. We denote by

C[G] the subalgebra of the complex-valued function algebra of G generated by the

canonical coordinate functions of Cn restricted to G. We will refer to C[G] as the

coordinate algebra of G. Now for f ∈ C[G], consider the map

∆(f) : G ⊗ G → G, g ⊗ h 7→ f(gh).

As a little thought will confirm, the fact that G is an algebraic group implies that

∆(f) can be considered as an element of C[G]⊗C[G]. Thus, the multiplication of

G induces a well-defined map

∆ : C[G] → C[G] ⊗ C[G].

The identity of G by 1 also induces a canonical map, which is given by

ε : C[G] → C, f 7→ f(1).

Finally, the existence of inverses in G, gives us a third canonical map S : C[G] →

C[G] defined by

S(f)(g) = f(g−1).
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Again, S being well-defined is guaranteed by the fact that G is an algebraic group.

A natural question to ask is if there exist some type quantum deformations of these

Hopf algebra structures for the compact semi-simple Lie groups. More specifically,

one might ask if Uq(sl2) can be used to find a deformation of Cq[SL2]. To answer

this question we will need to introduce some new general structures.

4.2 The Hopf Dual of a Hopf Algebra

In this section we present some basic facts about dual spaces and coalgebras. For

sake of clarity, let us first recall some standard notation: For V, W two vector

spaces, we write their vector space duals by V ∗ and W ∗ respectively. Moreover,

for L : V → W , a linear map, we denote by L∗ : W ∗ → V ∗ the linear map

determined by

L∗(f) = f ◦ L, (f ∈ V ∗).

Now if C is a coalgebra, then C∗ has the structure of an algebra with multiplication

given by the restriction of ∆∗ : (C ⊗C)∗ → C∗ to a map from C∗ ⊗C∗ to C∗, and

unit given by ε∗. The multiplication in C∗ is called the convolution of C∗, and one

usually denotes f ∗f ′ := ∆∗(f ⊗f ′), for f, f ′ ∈ C∗. Explicitly, f ∗f ′ acts according

to

(f ∗ f ′)(c) = f(c(1))f
′(c(2)), (c ∈ C).

This offers some motivation for the term coalgebra.

The obvious dual version of this construction fails, which is to say, the dual of an

algebra does not have an automatic coalgebra structure. To see why this is so,

first note that if m is the multiplication of A, then the dual of m has domain and

codomain as

m∗ : A∗ → (A ⊗ A)∗.

Now when A is infinite dimensional, A∗ ⊗ A∗ is a proper subset of (A ⊗ A)∗, and

we have no guarantee that the image of m∗ will lie in A∗ ⊗ A∗. We remedy this

situation by defining the finite dual of an algebra A to be

Ao := {f ∈ A∗ | f(I) = 0, for some ideal I of A with dimC(A/I) < ∞}.
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This definition is motivated by the following result:

Lemma 4.1 If A is an algebra with multiplication denoted by m and unit 1, then

Ao is a coalgebra with ∆ = m∗, and ε = 1∗. If A is commutative, then Ao is

cocommutative.

4.3 Quantum Coordinate Functions

We are now ready to take our first look at the quantum analogue of coordinate

functions:

Definition 4.2. Let M be a left-module over a Hopf algebra H . For any f ∈ M∗,

define the coordinate function cM
f,v by the rule

cM
f,v(h) = f(h.v), (h ∈ H).

The coordinate space of M is the subspace of M∗ given by

C(M) := {cM
f,v | f ∈ M∗, v ∈ M}.

We see that if M is finite dimensional with a basis {ei}
n
i=1, then a basis of C(M)

is given by

{cM
êi,ej

| i, j = 1, · · · , n},

where {êi}
n
i=1 is the dual basis of M∗.

We leave the proof of the following important lemma as an instructive exercise.

Lemma 4.3 Let M and N be finite dimensional modules over a Hopf algebra H.

Let f ∈ M∗, g ∈ N∗, and w ∈ N . Then

cM
f,v + cN

g,w = cM⊕N
(f,g),(v,w), cM

f,vc
N
g,w = cM⊗N

f⊗g,v⊗w,

ε(cM
f,v) = f(v), S(cM

f,v) = cM∗

v,f .

If {ei}i and {êi}i are dual basis for M and M∗, then

∆(cM
f,v) =

∑

i

cM
f,vi

⊗ cM
fi,v

.
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This result tells us that for any Hopf algebra H , the subset of Ho containing

the coordinate functions of the finite dimensional representations of H is a Hopf

subalgebra of Ho. In fact as the following result tells us, the two algebras are

equal:

Proposition 4.4 For any Hopf algebra H, its Hopf dual is equal to its Hopf al-

gebra of coordinate functions.

Our motivation for considering coordinate functions is given by the following clas-

sical result (which we have expressed in a form suited to our needs):

Theorem 4.5 (Peter–Weyl) For a simply-connected semi-simple complex alge-

braic group G, an isomorphism of Hopf algebras is given by

C[G] ≃
⊕

C

C(V ),

where, for U(g) the universal enveloping algebra of the Lie algebra of G, we have

used C to denote the family of finite-dimensional irreducible representations of

U(g).

4.4 The Hopf Algebra Cq[SL(2)]

We will now return to the specific case of Uq(sl2), and use the general theory

outlined above to find a Hopf algebra deformation of the coordinate algebra of

SL2. Motivated by the Peter–Weyl theorem we make the following definition.

Definition 4.6. The Hopf algebra Cq[SL2] is defined by

Cq[SL2] :=
⊕

l∈ 1

2
N0

C(T1,l).

The following proposition gives us some basic facts about Cq[SL2], as well as a

workable presentation of the algebra. We will not prove the result here, postponing

this to the general Drinfeld–Jimbo case discussed in the next lecture.

Proposition 4.7 The Hopf algebra Cq[SL2] has the following properties:
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1. It is generated as an algebra by the coordinate functions of the representation

T1, 1
2

.

2. Denoting by ui
j, for i, j = 1, 2 the choice of basis of C(T1, 1

2

) implied by the

choice basis of T1, 1
2

given in Definition 3.1, we have that

u1
1u

1
2 = qu1

2u
1
1, u1

1u
2
1 = qu2

1u
1
1, u1

1u
2
2 = u2

2u
1
1 + (q − q−1)u1

2u
2
1,

u1
2u

2
2 = qu2

2u
1
2, u2

1u
2
2 = qu2

2u
2
1, u1

2u
2
1 = u2

1u
1
2.

Moreover, these relations completely determine Cq[SL2].

3. The Hopf algebra structure of Cq[SL2] is determined by:

∆(ui
j) = ui

1 ⊗ u1
j + ui

2 ⊗ u2
j , S(ui

j) = −qi−jui
h, ε(ui

j) = δij .

4.5 Hopf Algebra Dual Pairings

We finish the lecture by introducing a concept that is central to the theory of Hopf

algebras . Moreover, we will see that it generalises a very familiar concept from

classical Lie theory.

Definition 4.8. A dual pairing of two Hopf algebras s G and H is a bilinear map

(·, ·) : G × H → C such that for all g1, g2 ∈ G, and h1, h2 ∈ H , it holds that

(h, gg′) = (h(1), g)(h(2), g
′),

(hh′, g) = (h, g(1))(h
′, g(2)),

(h, 1G) = εH(h), (1H , g) = εG(g),

(h, SGg) = (SHh, g)

In fact, it can be shown that the fourth condition follows from the other three

A very important, and useful, fact about dually paired Hopf algebras is given in

the following result, whose proof is left as an exercise.

A (right) comodule of H is a pair (V, ∆R), where V is a vector space, and

∆R : V → V ⊗ H,

5



is a linear map for which it holds that

(id ⊗ ∆) ◦ ∆R = (∆R ⊗ id) ◦ ∆R, (id ⊗ ε) ◦ ∆R = id.

(A left comodule is defined analogously.) In an extension of Sweedler notation, we

will usually denote

∆R(v) =
∑

i

vi ⊗ hi =: v(0) ⊗ v(1).

Lemma 4.9 Let H and G be a dually pair of Hopf algebras with dual pairing 〈·, ·〉.

It holds that every right (left) comodule of H induces a right (left) module of G.

Explicitly, if V is a right H-comodule with coaction ∆R, then the corresponding

action of G on V is given by

V × G → V, (v, g) 7→ v(0)

〈
S(g), v(1)

〉
.

As one might have guessed, the two Hopf algebras Uq(sl2) and Cq[SL2] are dually

paired. This generalises the classical pairing between the Lie algebra sl2 and the

coordinated algebra of SL2

Proposition 4.10 A dual pairing for the Hopf algebras Uq(sl2) and Cq[SL2] is

given by

〈·, ·〉 : Uq(sl2) × Cq[SL2] → C, (X, f) → f(X).

Moreover, this pairing is non-degenerate in the standard sense.
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